
University of Florida EEL 4744 Fall 1997 Drs. A. A. Arroyo & E. M. Schwartz
Department of Electrical & Computer Engineering Eunbin Augustine Yim, TA

Page 1/3 20-Nov-97 7:49 AM

Lab 10: Introduction to Programming Autonomous Agents

OBJECTIVES
The objective of this lab is to introduce the student to
controlling a mobile, autonomous robot based on the
MC68HC11.

MATERIALS
• Talrik Jr. robot (TJ)
• MB2325 Communication Board
• RS-232 cable
• 40khz IR transmitter (i.e., TV remote control)
• TJ servo program (available on the web),

servotj.asm

INTRODUCTION
The Talrik Jr. (TJ, see Figure 1) robot consists of a
wooden body, a single-chip computer board
containing an E2 processor, two servos for motors,
two infrared detectors, and 2 infrared LED emitters.
The LEDs are not used in this lab and will not be
mentioned further.

Servos
The robot is driven by two independent servo motors.
The servo motors are attached to the wheels and
mounted to the sides of the robot. A servo is
essentially a DC motor with feedback circuitry, which
allows you to control the position the motor turns
toward. To tell the servo where to go, a 50Hz signal
is sent to the servo, and the duty-cycle of this signal
tells the internal circuitry how the servo should be
facing. The servo generally turns 180 degrees.
However, these servos have been hacked so the
feedback circuitry always believes the servo is in the
middle position and it can turn 360 degrees. The
angular velocity of the hacked servo is proportional to
how far from the center position of its range it is
instructed to move.
For the purposes of this lab, it will generally be
sufficient to use full forward, full back, and off. No
duty cycle at all (0) will cause the servo to not change
its position.
SHARP IR receivers

The robot has the ability to detect infrared light
modulated at 40Khz. Two forward-looking sensors,
one mounted on the right and one on the left, allow
the robot to tell from which direction the IR is
coming. The sensor is a modified version of the
standard receiver in a remote control device (like a
TV or a VCR). It has been modified in such a way as
to give an analog voltage corresponding to the
amount of IR received. The nominal value of the
sensors is 88 (decimal) on the A/D port and the
saturation value is about 130. The left mounted
sensor is on PE6 and the right mounted sensor is
on PE7.

MC68HC11E2
This chip is similar to the ‘E9 we have been using all
semester. The most noticeable difference is that
Buffalo is not on this chip. Instead, to download a
program the chip is put in special-bootstrap mode,
and a program is downloaded to it. This program,
called PCBug, is much like BUFFALO in that it
allows you to download programs, assemble code,
modify registers, etc. The use of this downloader will
be demonstrated in the lab.
Another distinct difference between the ‘E2 and ‘E9
is that the E2 has EEPROM from $F800 to $FFFF.
The programs you will right will be downloaded to
these locations. You will notice that the interrupt
vectors on this microprocessor are in EEPROM,
unlike the ‘E9. Instead of programming pseudo-
vectors, you will directly set the interrupt vectors. For
example, it will be critical to have the reset vector set
to the start of your program. That way when the chip
is reset in single-chip mode it will begin executing
your program code. Assuming the label that starts
your program is named “start”, setting the vector
would look like:

ORG $FFFE
FDB start

Your code is very likely to start at $F800. Another
point to keep in mind about EEPROM is that you

Figure 1: Talrik Jr. (TJ).

Figure 2: Unmodified servo controller.

Motor Position
Sensor

Analog
differential
motor control

Motor

HC11E2
(Pulse Modulated Signal,
intended position encoded
in duty-cycle)

University of Florida EEL 4744 Fall 1997 Drs. A. A. Arroyo & E. M. Schwartz
Department of Electrical & Computer Engineering Eunbin Augustine Yim, TA

Page 2/3 20-Nov-97 7:49 AM

Lab 10: Introduction to Programming Autonomous Agents

can’t modify it on the fly (actually this can be done,
see the Reference manual, but it is not as simple as
just writing to a location). Do not try to write to an
EEPROM location in your program. All variables and
the stack must be in the 256 bytes of RAM in page0
memory ($0000-$00FF).

The ‘E2 only has 256 bytes of RAM (as opposed to
512 in the ‘E9, or 32k for expanded boards). Just be
careful not to overrun this limit.

Code
The lab includes code to control the servos. This code
is non-trivial, and it is best not to modify it in any
way. There are three pieces to the code. The first
piece, “_INIT_SERVOS” sets up the appropriate bits
to allow the service routine to happen and clears the
variables associated with the code. It is critical that
this is called BEFORE any other servo routines are
called.

The next routine for discussion is the interrupt service
routine that drives the servo. This ISR controls both
servos. It is critical that you set the OC2 interrupt
vector to point to location of “_SERVO_HAND”. It
is similar to the output compare lab completed earlier
this year. It outputs a 50Hz signal to each motor,
connected to pins in Port B. Since the position the
servo tries to take is determined by the uptime pulse-
width modulation, the service routine checks a global
variable called “width” that contains the uptime for
each servo in E-clocks. It is not necessary to modify
this variable directly.

Instead, a routine called “_SERVO” can be called.
Simply pass the index of the motor whose duty-cycle
you wish to change in register D (0 is left, 1 is right)
and then push the new duty-cycle as a two byte
number (low-byte first) on to the stack. Then execute
“JSR _SERVO”. A duty-cycle of 3000 E-clocks
corresponds to the middle (not moving) position of
the servo. The following table summarizes the full
forward and full reverse of each motor. You will
notice that the duty-cycle times are reversed between
the right and left motors.

Motor Full Forward Full Backwards

0 (left) 2000 4000
1 (right) 4000 2000

Duty-cycles between 3000 and full forward will make
the servo spin at a fraction of it its full speed.
Remember also that a duty-cycle of zero will make
the motor not spin at all, as will 3000 (the midpoint
setting). For this lab it is best to use only full foward,
backwards, and stop.

PRE-LAB REQUIREMENTS

1. Read the ENTIRE lab handout.
2. Write a complete, syntax error free program to

meet the program requirements.
3. DO NOT start this program the day it is due.

You will not be able to finish it.

PROGRAM REQUIREMENTS
In this lab, you will write two programs to accomplish
the following tasks: first to move the robot in a simple
pattern, and then to follow an IR emitting beacon.

Program Lab10A.ASM: Simple pattern generation-
this will allow you to progress to the next program:
1. Initialize the servo drivers.
2. Go forward
3. Delay a while.
4. Turn.
5. Delay a while
6. Repeat steps 2~5, so that TJ moves in a simple

pattern (e.g. triangle, rectangle, circle, etc.).

Program Lab10B.ASM: Follow an infrared(IR)-
emitting device:
1. Initialize the A/D system.
2. Initialize the servo drivers.
3. Go forward.
4. Read the IR receivers on PE6 and PE7.
5. Move in the direction of the higher reading. If

neither is higher, go straight.
6. Delay a while.
7. Repeat steps 4~6, so that TJ follows the IR beam.

INFORMATION
Helpful hints to write the program 1:
1. Write three routines for motion: one to go

straight., one to make the robot spin left, and one
to make the robot spin right.

2. As in the last lab you can make your delay any
way you like. However the most straightforward
and therefore most likely to work method is to
use a simple looping delay subroutine. Make
your delay a reasonable period, like a second or
two.

3. Include SCI routines from previous labs in your
code so you can debug your program.
Remember, there is no BUFFALO so you will
have to use the routines you wrote yourself.
(They are also on the web).

Helpful hints for program 2:
1. Modify the routines you wrote to change the

direction of the robot so that instead of simply
spinning in place, they keep the robot moving
forward and turn more gradually. Have one
motor spin and the other motor simply turn off.

University of Florida EEL 4744 Fall 1997 Drs. A. A. Arroyo & E. M. Schwartz
Department of Electrical & Computer Engineering Eunbin Augustine Yim, TA

Page 3/3 20-Nov-97 7:49 AM

Lab 10: Introduction to Programming Autonomous Agents

2. You may chose to delay a little between reading
the analogs. Otherwise, the robot may be
oversensitive.

3. It is best that you look for a difference greater
than 2 between the analog readings before
turning. This keeps the effects of noise and
mismatch between sensors to a minimum.

TESTING
Test all your code in SIM11 to the best of your
ability. Make sure nothing crashes. (You may have a
minor problem simulating in that the servo ISR reads
port B before it sets it. The simulator apparently
doesn’t reset port B to zeros. It may be necessary to
set $1004 to 0 in SIM11). Carefully think out all your
code. You will have limited opportunity to download
in the lab, and downloading to EEPROM is slow. Get
every part right you can BEFORE coming to the lab.

QUESTIONS

1. Considering that there are IR-emitters on your
robot, propose how you could use code similar to
the IR following code to make the robot avoid
obstacles in its path.

2. Looking carefully at the robot, explain why the
duty-cycles for forward are different between
right and left motors.

3. Propose a possible task(s)/application(s) using
TJ.

WRITE – UP
(Due at the end of the lab period)
You will submit the following to your TA:
1. The printout of your LAB10A.LST &

LAB10B.LST.
2. Answers to the questions.
Your name, lab section (day and time), TA name, and
date should be written in the upper right-hand corner.

Figure 3: Drawings of a TJ body.

